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Far-off-resonant pulsed laser fields produce negligible excitation between two atomic states but may induce
considerable phase shifts. The acquired phases are usually calculated by using the adiabatic-elimination ap-
proximation. We analyze the accuracy of this approximation and derive the conditions for its applicability to
the calculation of the phases. We account for various sources of imperfections, ranging from higher terms in
the adiabatic-elimination expansion and irreversible population loss to couplings to additional states. We find
that as far as the phase shifts are concerned, the adiabatic elimination is accurate only for a very large detuning.
We show that the adiabatic approximation is a far more accurate method for evaluating the phase shifts, with
a vast domain of validity; the accuracy is further enhanced by superadiabatic corrections, which reduce the
error well below 107, Moreover, owing to the effect of adiabatic population return, the adiabatic and super-
adiabatic approximations allow one to calculate the phase shifts even for a moderately large detuning and even
when the peak Rabi frequency is larger than the detuning; in these regimes the adiabatic elimination is
completely inapplicable. We also derive several exact expressions for the phases using exactly soluble two-

state and three-state analytical models.
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I. INTRODUCTION

Far-off-resonant laser pulses are a popular tool for induc-
ing controllable phase shifts in atomic states. These phase
shifts—usually referred to as dynamic Stark shifts—are fre-
quently used in the construction of dynamic phase gates,
which are a basic tool in quantum information processing
[1]. In many algorithms (e.g., Grover’s quantum search [2])
one has to prepare such phase shifts very accurately [3].
Insofar as quantum algorithms involve a great number of
phase gates, the accuracy of the latter is of crucial impor-
tance for high-fidelity quantum information processing.

There are three major types of phase gates: dynamic [3],
geometric [4], and using relative laser phases [5]. While the
latter two types have certain advantages in terms of robust-
ness against parameter fluctuations, these come at the cost of
more demanding implementations. The dynamic phase gate
benefits from the simplicity of implementation (because, un-
like the other phase gates, it requires just a single off-
resonant pulsed field), which determines its widespread use.

We emphasize that such phase shifts also emerge in vari-
ous more traditional dynamical problems involving compli-
cated linkage patterns. The quantum dynamics of these mul-
tistate systems can often be understood only by reduction to
simpler two- or three-state systems by using adiabatic elimi-
nation (AE) of all far-off-resonant (virtual) states. For in-
stance, it is mandatory to account for such dynamic Stark
shifts in excitation of multiphoton transitions by femtosec-
ond laser pulses [6].

As far as a phase shift of 7 is concerned the simplest
approach is to use a resonant 27 pulse. A variable phase shift
¢, however, requires a field with a suitable detuning and
intensity; such a variable phase shift is required, for example,
in deterministic quantum search [7].

The dynamic Stark shift and the ensuing phase shift are
usually calculated by eliminating adiabatically the off-
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resonant state(s). In this paper we show that unless applied
very carefully, the AE approximation can lead to significant
errors in the value of the phase. We analyze various sources
of errors, ranging from higher terms in the AE expansion to
population decay and shifts from additional states [8], and
show that the standard AE approximation is accurate only for
very large detuning A (Sec. IIT). We then present a method
for the evaluation of the phase based on the adiabatic ap-
proximation (Sec. IV). This approximation provides a simple
formula for the gate phase, which contains the AE phase as a
limiting case for |A|— oo, but it is also valid for moderately
large detunings (JA|T=1, with T being the pulse width).
Then we include superadiabatic corrections (Sec. IV C), dis-
sipation (Sec. IV D), effects of additional states (Sec. V), and
several exact solutions (Sec. VI).

II. BACKGROUND

We consider a two-state quantum system (a qubit) inter-
acting with a coherent field (Fig. 1, left), and we wish to
estimate the accumulated phase during this interaction. The
phase gate is defined as

FIG. 1. Linkage diagram for a two-state system (left), a three-
state system in a ladder configuration (middle), and a three-state
system in a V configuration (right).
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where F=U(#) is the desired form of the propagator U(z) at
the final time f. The propagator U(z) satisfies the
Schrodinger equation [9]

ihdU(r) = H()U(s), (2)

with the initial condition U(#)=1I at time 7. This propagator
allows us to calculate the phases of the two states, accumu-
lated during the interaction, for arbitrary initial conditions.
The Hamiltonian in the interaction representation and the
rotating-wave approximation reads

0 Q —iD(1)
H(t)—ﬁ 106 (e ’ 3)
(t)e 0

with D=["_A(t')dt', where A=wy,—w is the detuning be-
tween the laser carrier frequency w and the Bohr transition
frequency w,. For simplicity, we assume hereafter that the
detuning is constant, A=const; the results can be readily ex-
tended to time-dependent A(r). The Rabi frequency ((z)
=—d-E(r)/h parametrizes the coupling between the electric
field with an envelope E(¢) and the transition dipole moment
d of the system.

In terms of the two probability amplitudes of the qubit
states ¢,(7) and c,(z), the Schrodinger equation reads

ihde(t) =H(t)e(r), (4)

with ¢(f)=[c,(¢),c,(t)]”. For initial conditions c,(#;)=1 and
¢,(#;)=0, the action of the phase gate F reads

Fe () = e'ci(1), Fey(t) =0. (5)
For initial conditions ¢,(#)=0 and ¢,(t;)=1, we have
Fei(t) =0, Fey(r) = e ey(ty). (6)

Solving the Schrodinger Eq. (4) for the initial conditions
ci(t)=1, ¢,(1;)=0 is sufficient for the calculation of the gate
phase; if the Hamiltonian (3) produces the phase change (5),
it will produce the phase gate (1).

III. ADIABATIC-ELIMINATION APPROXIMATION
A. Steady-state solution
We begin with the traditional adiabatic elimination. To
this end, it is suitable, with the phase transformation ¢ (1)
=b,(1) and ¢,(1)=b,(1)e™PW, to write the Schrédinger equa-
tion (4) in the energy picture,

i3y ()= 50000, (7a)

1

id:by(t) = EQ(t)b (1) + Aby(2), (7b)
with the initial conditions b(#;)=1 and b,(#;)=0. The AE
approximation is applicable when the field is tuned far off
resonance (|A|>(), which implies a small transition prob-

PHYSICAL REVIEW A 79, 042108 (2009)

ability. Then we set b,(1)=0, find b,(¢) from Eq. (7b), and
substitute it in Eq. (7a). The result is a solution of form (5),
with a zero transition probability and a phase factor

4 2
= f(m) (8)

In fact, this is the steady-state solution, which is just the first
term in an asymptotic expansion over A. We note that this
expression has only a small region of validity |A|> ) and
does not give us a rigorous error estimation.

B. Adiabatic elimination: Higher terms

In order to find the next terms in the asymptotic expansion
over A it is more convenient to start from the original inter-
action representation, Egs. (3) and (4),

idicy(1) = %Q(f)e_m(t)cz(t) , (9a)

id,c5(t) = %Q(t)eiD(’)cl(t). (9b)

A formal integration gives
o) =— é ft Q@)™ ¢\ (¢)dt' . (10)

Now we integrate by parts,

! Q ! . ’
() =- f z(i)cl(t’)de’m

Q ‘ t o iAr

_— fcl(t)e“% mﬁz[ﬂ(’)clm]elm

t

rdl e 9, [Q( e, (t)]dr (11)

We substitute this expression in Eq. (9) and obtain

c)(t) = e el 0, (12)
where y=0 for a large detuning. Indeed, for smooth pulse
shapes, the transition probability (1—¢~2” here) vanishes ex-
ponentially with A. For example, for a Gaussian pulse, the
transition probability vanishes as ~sech’[ 7AT/2 In(Q,T)]
[10], whereas for a hyperbolic-secant pulse it vanishes as

~sech®(wAT/2) [11].
The phase in Eq. (12) reads
Qé
+0 E dt.
(13)

Q0)* + 400>
16A3

tg QO 2
¢AE=JIi [ 4(2 -

The calculation of the higher terms is increasingly compli-
cated and barely useful. We will refer to this phase as AE2 in
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order to distinguish it from the AE phase (8). This expression
shows that the AE approximation is good only for a very
large detuning and a smooth pulse [because of the presence

of Q()]. The reason is that in an expansion for a phase it is
not sufficient to retain the leading term and demand the next
term to be much smaller than it; one must also demand all
neglected terms to be much smaller than unity. Obviously,
terms of the order of unity or larger cannot be discarded in
the estimate of the phase because the latter is defined modulo
21; hence the leading term alone may provide a value that is
not even close to the exact value. We emphasize, however,
that if the transition probability is concerned, then the lead-
ing term in the AE approximation, which is of order
0(Q3/A?), provides an adequate estimate.

We are now in a position to estimate the necessary values
of the interaction parameters. Let us express the time-
dependent Rabi frequency of the pulse as Q(r)=Qqf(¢/T),
where ) is its peak value, T is the characteristic pulse
width, and f(z/T) describes the pulse shape. The AE approxi-
mation demands |A|> (). The value of the phase is in gen-
eral of order O(1); this implies Q37 ~|A|. Hence we must
have (Q,T)*>~|A|T>Q,T, which in turn implies

|A|>Qy> UT, (14)
i.e. the detuning A and the peak Rabi frequency (), must be
large compared to the Fourier bandwidth of the pulse 1/7.
C. Examples
1. Gaussian pulse
For a Gaussian pulse,
Q1) = Qe (15)

where T and (), are positive constants, the Schrodinger equa-
tion cannot be solved exactly and only some approximations
are known [10]. The AE approximation (13) gives
o WnT  0fmOdr? - 4\2)
AR 4\hA 32A%T

+0(QY/A%).

(16)

Due to condition (14), the “roughness” term —4\2 in the

second term, which is derived from the ((¢) term in Eq. (13),
is small compared to the term Q%Tz.

A meaningful phase gate requires that ¢~ 7, which im-
plies that we must have QfT~4\2m|A|. Then the second
term in Eq. (16) is ~7~/2/(AT), which provides an estimate
of the error in the phase. For an error <107, we must have
|A|T=5 X 10* This is indeed a very large value, particularly
in many-particle systems where a variety of modes exists,
and such a detuning may violate the condition of single-
mode coupling.

Figure 2 shows the phase shift after an interaction with an
off-resonant Gaussian pulse. The AE phase (16) approaches
the exact phase only when the detuning A exceeds the peak
Rabi frequency (). The error of the first (steady-state) term
in the AE phase barely drops to 1% in the shown range. The
second term in the AE expansion (16) is seen to improve the
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FIG. 2. (Color online) Phase shift vs the detuning A for a Gauss-
ian pulse shape with a peak Rabi frequency ()(=8/7. The exact
phase, calculated numerically by solving the Schrodinger equation,
is compared with the AE and AE2 approximations, the adiabatic
(AA) and superadiabatic (SA) phases. Top, the phase shift; bottom,
the absolute error of the respective approximation.

accuracy as |A| increases. The other more accurate phases
shown in the same figure are derived in Sec. IV.

Figure 3 shows the same phases versus the peak Rabi
frequency (). Similar conclusions can be drawn, as for Fig.
2; the AE approximation gives reasonable results only when
the detuning A greatly exceeds the peak Rabi frequency ().
The other two phases, to be discussed below, clearly provide
much better fits to the exact phase for the entire ranges in
Figs. 2 and 3.

2. Hyperbolic-secant pulse

The sech pulse,

1.0

sing
<)

Error

Peak Rabi Frequency Q (in units 1/7)

FIG. 3. (Color online) Phase shift vs the peak Rabi frequency
Q) for a Gaussian pulse shape and a detuning A=10/T. The exact
phase, calculated numerically by solving the Schrodinger equation,
is compared with the AE and AE2 approximations, the adiabatic
(AA) and superadiabatic (SA) phases. Top, the phase shift; bottom,
the absolute error of the respective approximation.
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FIG. 4. (Color online) The same as Fig. 2 but for a hyperbolic-
secant pulse shape.

Q(r) = Q sech(¢/T), (17)

describes the pulse shape in the famous exactly soluble
Rosen-Zener (RZ) model [11]; we shall return to it in Sec.
VI. The AE approximation (13) gives for it

wn _ T _ QAT -2)

QY/AY). 18
AE oA 12A3T +0(Qy/A7) (18)

This approximation is compared in Fig. 4 with the exact
values. Similar conclusions as for the Gaussian pulse in Figs.
2 and 3 apply; the AE approximation provides a reasonable
estimate for the phase shift only when the detuning A greatly
exceeds the peak Rabi frequency (). Keeping more terms in
expansion (18) improves the accuracy to some extent for
large detunings, but this neither extends the range of validity
of this approximation nor reaches the accuracy of the adia-
batic and superadiabatic approximations, to which we turn
our attention now.

IV. ADIABATIC APPROXIMATION

We shall now demonstrate that the adiabatic approxima-
tion is a very accurate tool for calculation of the phase shift,
with a vast domain of validity.

A. Two-state adiabatic solution

The adiabatic states ¢,(¢) and ¢_(7) are the eigenstates of
the time-dependent Hamiltonian in the Schrodinger represen-
tation (7), with eigenvalues

1
N.(t) = E[A =\ (19)
with \(¢)=Q(7)>+A>. The amplitudes in the adiabatic basis

a(r)=[a,(t),a_(1)]" are connected with the diabatic ones b(t)
via the rotation matrix

R(6) = { cos # sin 0} (20)
" |=sinf cos 6]
as  b(r)=R(6(z))a(r), where =%arctan(Q/A). The

Schrodinger equation in the adiabatic basis reads
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ihda(t) = H,(1)a(t), (21)
where
{ur) —ié’(t)]
H,(5)=h| . (22)
10(2‘) )\+(t)

If |6(r)| <\, (1)-N_(1)=\(7), then the evolution is adiabatic
and the propagator in the adiabatic basis reads

e 0
Ua = |: —iA+ :| > (23)

where A = [\ .(r)dr. We find readily that the propagator U
in the original basis (2) is the phase gate (1), U=F, with the
phase ¢p=—A_, or explicitly,

S —
b= %J [VQ(1)? + A* - Aldt. (24)
4
This phase reduces to the AE approximation (8) for large
detuning, |A|> Q. However, Eq. (24) is valid also for |A|
<€), provided that the adiabatic approximation holds.
Figures 2—4 show that the adiabatic phase (24) provides a
considerable improvement of accuracy over the AE phase for
all detunings |A|=1/T. Unless a very high accuracy is re-
quired (error <107%), the adiabatic phase must suffice in ap-
plications. The key to the understanding of the reason for its
accuracy is hidden in the adiabatic condition.

B. Adiabatic condition

For adiabatic evolution, the nonadiabatic coupling |6(z)|
must be small compared to the splitting \(¢) in order to sup-
press transitions between the adiabatic states. For a constant
detuning, the adiabatic condition reads

|Q()A| < 2[Q1)? + A2 (25)

For Gaussian [10] and sech [11] pulse shapes this condition
reduces to

2 —
Gaussian: |A|> Ag=——VIn(Qy7), 26a
|A] > A, 3T (Qo7) (26a)
1
sech: |A|>Aj=—+. (26b)
3\6T

Adiabatic evolution is achieved for a sufficiently large detun-
ing. The sech pulse is obviously more adiabatic for it re-
quires a lower detuning. The Gaussian pulse is less adiabatic;
moreover, unlike the sech pulse it exhibits a logarithmic
power broadening.

The important message for the present context is that the
adiabatic approximation requires a much lower value of the
detuning than the AE approximation. Conditions (26a) and
(26b) are only indicative; a more thorough analysis shows
that the nonadiabatic deviation vanishes exponentially with
the detuning [11,12]. Consequently, the necessary detuning
increases logarithmically with the required accuracy. The im-
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plication is that the adiabatic phase gate can operate also at
intermediate detunings, moreover, regardless of the value of
), because the adiabatic condition does not depend (or de-
pends very weakly) on ). Thus the condition for the adia-
batic phase gate is

AIT> 1, (27)

then the effect of coherent population return [13—15]—the
adiabatic return of the population to the initial state in the
absence of a level crossing—ensures a negligibly small tran-
sition probability in the end of the interaction.

We point out, however, that the perturbative estimate for
the transient excitation is still

QO(r)?

P+ Ay’ (28)

hence there may be a significant transient excitation unless
|A|> €. The adiabatic phase gate, therefore, can be used for
Q> |A| only if the relaxation times of the two qubit states
are large compared to the pulse duration—a condition that
must be fulfilled for any practical qubit for all types of op-
erations.

C. Superadiabatic phase

If the evolution is not perfectly adiabatic, we can diago-
nalize the adiabatic Hamiltonian (22) by the transformation
a(t)=R(x(2))s(z), where x(r)= arctan[&(r)/ N#)] and the
vector s(¢) contains the amphtudes in the superadiabatic ba-
sis; they satisfy the equation

ifia,s(1) = H(Ds(7), (29)
where
(1) —iX(t)}
H =h 30
() [ixm e (30)

and p.=(A+ VO?+A2+46%)/2. The condition for supera-
diabatic evolution is |x(#)| < u, () — u_(2); if it holds then the
propagator in the superadiabatic basis is

U |:e_iM_ O :|
Lo e ]

where M . = [ (1)dr. The propagator in the original basis
(2) is the phase gate (1), U=F, with the superadiabatic phase
¢=—M_, or explicitly,

- A] dr.

I
qu:—J [ \/Q(t)2+A2+
2J,
The derivative term is the superadiabatic correction to the
adiabatic phase (24). The condition that this correction is
small is the same as the adiabatic condition (25).
As evident from Figs. 2-4, the superadiabatic phase (32)
is extremely accurate for all detunings except A— 0, with an
error comfortably below 107 (the usual fault tolerance in

(31)

Q(1)2A?
[Q()* + AT
(32)
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quantum computing). The results clearly demonstrate that the
superadiabatic phase outperforms the adiabatic phase, let
alone the AE phase.

Following the same diagonalization procedure, one can go
to the next superadiabatic bases and achieve an even higher
accuracy. However, as Figs. 2—4 suggest, this is unnecessary
since the superadiabatic phase already easily satisfies the
commonly accepted accuracy goal.

D. Dissipation effects

Dissipation is detrimental for quantum information pro-
cessing and various proposals have been put forward to re-
duce its effects [1]. Because it is impossible to treat here all
aspects of dissipation, we restrict ourselves only to the sim-
plest case of irreversible population loss. In femtosecond
physics, where the present results can be particularly useful,
this is a very reasonable assumption because population loss
can occur through ionization induced by the driving laser
pulse, whereas the other types of dissipation (dephasing,
spontaneous emission, etc.) are irrelevant due to the ul-
trashort time scale.

In order to account for the population loss, we write the
Hamiltonian in the form

h| O Q)
H(») = _[Q(;) 2A(1) = iT(1) }

Next, we go to the adiabatic basis, formed of the eigenstates
of the Hamiltonian without losses (I'=0). In this basis the
Hamiltonian reads

(33)

R P -
N_——il'sin“ @ —il'sin20-i0

2 4
(34)

1 . 1
—il"sin 20+i60 N, — =il cos® 6
4 2

where for brevity the argument ¢ is omitted. In the adiabatic

limit, we can neglect 9, as was done in Sec. IV A. Next, we
recognize that the first (second) adiabatic state coincides at
t— * oo with the first (second) diabatic state. We eliminate
adiabatically the second adiabatic state and obtain the phase
and the population of state 1,

I(¢)*sin® 26(1)
16\(7)

expl— %f fF(t)sin2 G(I)dt}

We note that the population is much more sensitive (expo-
nentially) to losses than the phase, which in the lowest order
is quadratic in I". This conclusion is demonstrated in Fig. 5.
The phase barely changes its value as the loss rate changes
from zero to 10/7, even as the population of the initial state
decreases considerably. We note that the displayed range of
loss rates is much larger than what can be tolerated in quan-
tum computing; nevertheless the phase itself and the ap-
proximation to it are very stable against such losses.

b= {7\ () + ]dt, (35a)

2

P, = (35b)
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FIG. 5. (Color online) The initial-state population and phase vs
the loss rate I" for a Gaussian pulse with Qq=8/T and A=20/T. The
solid lines represent the exact values and the dashed lines are for the
approximations (35a) and (35b).

V. EFFECTS OF ADDITIONAL STATES
A. Ladder configuration
1. Adiabatic elimination

We shall now find how the presence of an additional state
affects the phase shift. For this purpose let us consider a
three-state system in the ladder configuration, wherein non-
zero dipole moments only link state 1 with state 2 and state
2 with state 3 (Fig. 1, middle), as described by the Hamil-
tonian

% 0 Qpm 0
H() == Qpp(1) 24, Q1) |. (36)
0 Oy3() 245

For the first-order (steady-state) AE approximation, we set
¢,(#)=0 and ¢4(r)=0, and find from the Schrodinger equation
the accumulated phase in state 1 to be

ABQIZ(t)

=], ana,- 002" G37)

As expected, in the limits {,3—0 or |A;|— oo, this expres-
sion reduces to Eq. (8). When 4|A,A5|> Q5(¢)> we obtain

Q1) T2 Q0s(1)?
oo [0, [ DSy
4A ; 16A5A4
We conclude that for ), ~Q,; and A, ~ A;, the correction
from the presence of an additional state is of the same order
as the second term in the AE expansion (13).

2. Adiabatic approximation

For simplicity and without loss of generality, we will as-
sume A;>A,>0. In order to find the eigenvalues of Hamil-
tonian (36), we have to solve the cubic characteristic equa-
tion

PHYSICAL REVIEW A 79, 042108 (2009)
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FIG. 6. (Color online) Phase shift of the lowest state in a three-
state ladder with detunings A;=2A,=20/T vs the peak Rabi fre-
quency (). The Rabi frequencies for the two transitions are equal
and have Gaussian shapes. The phases from the adiabatic approxi-
mation for two (AA2) and three (AA3) states, Egs. (24) and (42),
and the AE approximation for three states in Eq. (38) are compared
to the exact values. The AA3 curve is nearly indiscernible from the
exact one.

e +ae’+be+c=0, (39)

where  a=-A,-A;, b=A,A;—(Q3,+Q3,)/4, and ¢
=A3()7,/4. The three roots of this equation are the quasien-
ergies of the three-state system [9],

sl——g—?pcos 3 (40a)

2 +
g=—= —pcos'B 77, (40b)

3 3 3

2

£y=— a + —pcosé, (40¢)

3 3 3

where
TR 9ab - 2a’ - 27c

p=\a®-3b, cos = . (41

2p3

The adiabatic phase is just an integral over g,(r) [16],

¢=—Jf81(t)dt. (42)

In order to exhibit the effect of the third state on the phase
gate, we derive the asymptotics of the quasienergy &, for
large A5 and substitute it in Eq. (42); we find

_ It _ 't 8_(t)923(l)2
o== ) od f Vs s oo @

where £_=(A,~VA3+Q7},)/2.

Figure 6 compares the AE and adiabatic approximations
to the exact phase shift in a ladder system. The three-state
adiabatic phase (42) is very accurate throughout, as already
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FIG. 7. (Color online) Phase shift of the lowest state in a three-
state V system with detunings A;=2A,=20/T vs the peak Rabi
frequency (). The Rabi frequencies for the two transitions are
equal and have Gaussian shapes. The phases from the adiabatic
approximation for two (AA2) and three (AA3) states, and the AE
approximation for three states in Eq. (45) are compared to the exact
values. The AA3 curve is indiscernible from the exact one.

anticipated, whereas the AE phase (38) departs from the ex-
act one when the Rabi frequency becomes comparable and
exceeds the detunings. We note that the error of the AE phase
is of the same order as the error from the neglect of the
additional state, Eq. (24).

B. V configuration
If the three-state system is in a V configuration (Fig. 1,
right), the Hamiltonian reads
0 Qp@ Qi)
Q) 24, 0
Qi@ 0 2A;

Then the AE approximation, applied in a similar fashion as
for the ladder system above, gives in the first order the ex-

pression
b= i le(f)z f’f Q5(0)°
4 4A2(t) 4 4A3(t)

H() =~ (44)

dt. (45)

The contributions from each arm in the V system are inde-
pendent. Higher-order terms mix the contributions from the
two arms.

The adiabatic phase is calculated in a similar manner as
for the ladder system in the form of an integral over the
respective eigenenergy.

In Fig. 7 we compare various expressions for the dynamic
phase in a three-state V system. The figure reveals that, once
again, the three-state adiabatic approximation (AA3) pro-
vides a very accurate estimate. On the contrary, the error of
the AE approximation is comparable to the effect of the ad-
ditional third state.

To conclude this section, we point out that a third state in
the considered ladder or V systems distorts the symmetry of

PHYSICAL REVIEW A 79, 042108 (2009)

the phase gate (1) because the third state is coupled differ-
ently to the two qubit states—directly to one of them and
indirectly (via a two-photon transition) to the other state. For
each qubit state, the additional state will make the linkage
look either as a ladder (if connected to the other qubit state)
or as a V (if connected to the same qubit state). Conse-
quently, the phase shifts for the two qubit states are different,
as evident when one compares the expressions for the ladder
and V systems above. We note that a Lambda system, with
the population initially in one of the lower states, is equiva-
lent in the present context to a ladder system (population
initially in the end of the chain). The phase shifts in such a
system have been studied recently [8] in a slightly different
context. In Sec. VI we compare these approximations with
the values of several exactly soluble two-state and three-state
models.

VI. EXACT SOLUTIONS

We shall present the solutions of three exactly soluble
models. The first one is the famous RZ model, which as-
sumes a sech pulse shape (17) and a constant detuning, and
the others extend the RZ model to systems with three states.
The latter are solved by using the Majorana decomposition
[17,18] for a ladder system and the Morris-Shore transforma-
tion [19] for a V system.

A. Two states: Rosen-Zener model

The exact solution for the phase in the RZ model (17) is
[11,20]
11 )\?
I' -+ =id
2 2

p=arel —H 1T 11\
I'N=—+-id-—all'| =+ -id+ -«
2 TR\

(46)

where a=Q,T, §=AT, and I'(z) stand for the gamma func-
tion [21]. Using the Stirling asymptotics of I'(z) [21], we
obtain

92T QO (QFT?-2)

¢~ A 12A3T

(|A] > 1/T, Q).

(47)

This is exactly the result from the AE expansion (13).

The exact expression for phase (46) allows us to perform
a theoretically exact phase gate operation with a variable
phase ¢ by selecting a suitable detuning A. By using stan-
dard properties of the gamma functions, one can show that
the transition probability vanishes exactly for a pulse area
A=mQT=2n1, where n is an integer. For these values («
=2n), Eq. (46) reduces to [20]

(b=n7r+2arg[H(2k—l—iAT)]. (48)

k=1
For any desired phase ¢ the corresponding detuning is found
by solving the latter equation for A. For example, a phase
shift ¢=7 can be obtained by any odd value of n
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=1,3,5,... and A=0 (a property that is well known for any
pulse shape) The same phase shift can also be produced by
a pulse area A=47 (n=2) and AT=1/3. As further examples,
phase shifts of ¢=m/2, /3, /4, and 7/6 can be obtained
for 1L=1 by choosing, respectively, AT=1, V3, 1+2, and
2+4/3.

B. Three-state ladder

We consider a three-state system in a ladder configuration
(Fig. 1, middle), described by Hamiltonian (36), assuming
that

912([) = 923([) = QO SeCh([), A3 = 2A2 =2A. (49)

This model has a simple exact solution [22]; the amplitude of
state 1 is just the square of the amplitude for a two-state
problem with a Rabi frequency Q(7)= le(t)/\Z Because
this is the two-state RZ model, we find the phase of state 1 to
be

+
=2
$=2arg 11 1
INz+<io—-——Fa|l'| -+ Zid+ —&
2 2 24 2 2 2V2

with a=QyT and 6=AT. The exact expression (50) allows
one to design an exact phase gate even in the presence of an
additional state. For example a gate phase ¢=1r can be ob-
tained for OyT= 2n\2 with any odd value of n=1,3,5,.
and A=0; the same phase can be produced by a pulse area
A=4m\2 (n=2) and AT— V3. A phase shift of ¢=1r/2 can be
obtained for A=27\2 and AT=1.
The asymptotics of this phase reads

OT QYT - 4)

d)w
(51)

The comparison with Eq. (47) shows that the effect of the
third state emerges only in the second term in the expansion
over A, a feature that appeared earlier in the AE expansion
(38) and in the adiabatic expansion (43).

C. Three-state V system
If the system is in a V configuration (Fig. 1, right) and if

le = %1290 SeCh(t/T), (523)
913 = %1390 SeCh(f/T), (52b)
A2=A3=A, (52C)

with 2, and %y arbitrary constants, then we can use a
simple change in basis, known as the Morris-Shore transfor-
mation [19]. The latter transforms the V system into an un-
coupled dark state and a two-state system, with a detuning A
. [2 . 2 .
and a Rabi frequency x€)(r), where »=1x,+%;. In this
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manner it can readily be shown that the argument of the
amplitude of state 1 is [23]

1 1 \?
I'\=+=ié
2 2

=2
¢=2arg) — T 111
I' =4+ —-id——xa|l'| =+ —-id+ —x«
27297 272197

(53)
The asymptotics reads
%ZQ% %ZQg(x2Qg -2)
2A 12A°

(|A] > 1/T, Q).

(54)

The leading term is a sum of two independent phase shifts
induced by each of the two arms of the V system, in agree-
ment with Eq. (45), while the »* part in the second term
represents a combined contribution of the two arms.

VII. CONCLUSIONS

We have presented a detailed analysis of the accuracy of
the adiabatic-elimination approach, which allows one to
eliminate weakly coupled far-off-resonant states and reduce
the interaction dynamics of a quantum system to a smaller
effective one. We have put a special emphasis on the ac-
quired phase shifts in the probability amplitudes after the
interaction with an off-resonant pulsed field. The results have
direct implications in the construction of variable dynamic
phase gates, which are of major importance in quantum in-
formation processing.

We have shown that in the traditional implementation
with a far-off-resonance pulsed field, the formula for the gate
phase derived by the adiabatic-elimination approximation
has to be used with great care because it is just the first term
of a series expansion in the inverse detuning 1/A; higher
terms, unless negligible in value with respect to unity, may
render the formula irrelevant. This formula requires a very
large detuning in order to be sufficiently accurate because
including corrections from higher terms is barely useful due
to their complexity and slow convergence. However, quan-
tum information processing involves operations with en-
tangled many-qubit systems, possessing a variety of fre-
quency modes; there a very large detuning may violate the
assumption of single-mode interactions.

We have proposed to use a much more accurate formula
for the phase shift, derived within the adiabatic-following
approximation. The advantage of this adiabatic phase is that
the condition for adiabatic evolution is much more relaxed
than the condition for adiabatic elimination. The adiabatic
phase contains the AE approximation as a limiting case for
|A|— oc; however, it also applies to moderate detunings. The
adiabatic phase applies also to the case when the peak Rabi
frequency (), exceeds the detuning A; in this case the phase
gate operates due to the effect of adiabatic population return.
A superadiabatic correction is demonstrated to further im-
prove the accuracy, to errors comfortably below the fault-
tolerance limit of 107 in quantum computing. We have also
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derived the corrections to the gate phase from additional
states coupled to the two qubit states.

In addition, we have derived several exact expressions for
the gate phase in several exactly soluble analytical two-state
and three-state models, assuming a hyperbolic-secant pulse
shape. The exact analytical formulas allow us to design
highly accurate phase gates, however, at the expense to the
requirement for a special pulse shape. We have also used the
exact expressions to test the accuracy of the derived AE and
adiabatic approximations. The results in this paper have po-
tential applications not only in the calculation of dynamical

PHYSICAL REVIEW A 79, 042108 (2009)

Stark phase shifts in simple phase gates but also in compli-
cated multistate linkage patterns, which can be factorized to
simpler systems by utilizing the intrinsic symmetries, e.g., by
the Morris-Shore transformation [19,24].
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